
SwiftJPEG 1.10 User Guide

24-Feb-2005

Contents

1. Introduction...3
2. Why use it?..3
3. Starting SwiftJPEG..3
4. Viewing images and the File List..4
5. The Display window..5
6. Menus..6

Main menu..6
Picture menu...7

7. The Zoom box...9
8. Limitations with zooming...10
9. Full Screen mode...11
10. The Choices dialogue box...13

Display section..13
Desktop actions section...15
Full Screen actions section..15
Full Screen behaviour section...16
Full Screen fade-in and Full Screen fade-out sections..17
Miscellaneous section...17
Buttons..18

11. Using SwiftJPEG on RISC OS 3.1 and RISC OS 3.5...19
RISC OS 3.5..19
RISC OS 3.1..19
Where do I put the modules?..20
Other issues for older operating systems...20

12. Using SwiftJPEG's Full Screen mode and ViewFinder...21
Appendix A: Contacting the author...22
Appendix B: Thanks..23
Appendix C: Technical notes...24

Use of Alt+Break...24
Troubleshooting – stripy images and ColourTrans aborts...24

Appendix D: Development history..25
Appendix E: Disclaimer and license...30

Disclaimer...30
License..30

The SwiftJPEG application is © Hipposoft 1995-2005

SwiftJPEG 1.10 User Guide, 24-Feb-2005 1 of 29

1. Introduction

SwiftJPEG is a viewer for JPEG images. These are a particular kind of image common on the World
Wide Web and used by most digital cameras.

The application runs on RISC OS 3.1 through to RISC OS 5. To run on RISC OS versions 3.5 and
earlier you have to load some support modules (described later). RISC OS 3.6 and later need no
additional software.

2. Why use it?

SwiftJPEG provides a fast and convenient way to view JPEG images
without using a lot of the computer's memory. On a RISC OS 3.1
machine with the relevant modules loaded, SwiftJPEG provides a
chance to view images that would normally be far too large to fit in
memory using the conventional mechanism of decompressing the
image using something like ChangeFSI.

On RISC OS 3.6 upwards, the Draw and Paint applications can both
read JPEGs directly. Draw keeps the image as a JPEG, but Paint
decompresses the image completely, which means a large JPEG can
require a very large amount of RAM to be viewed. Neither application
is designed purely as a viewer for images; both are designed as editors
for other kinds of material. SwiftJPEG fills this gap.

3. Starting SwiftJPEG

To start SwiftJPEG, double-click on the application. It can be run
directly from a read-only medium such as a CD-ROM or archive,
though if you want to be able to save Choices settings, you must copy
the !SwiftJPEG application directory to a writable location such as a
hard disc. SwiftJPEG can also be started by double-clicking on a
JPEG file once the Filer has 'seen' SwiftJPEG.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 2 of 29

i More about JPEG images

JPEG images use a form of
lossy compression. This
basically means that the
quality of the JPEG image
can be chosen when it is
created, with a lower quality
image producing a smaller
file. JPEGs are designed to
be used with photographic
images; the sort of
information that the lossy
compression mechanism
throws away as the quality is
decreased is least noticed
with photographic images,
and most obvious with
things such as line art or
screen shots of computer
programs.

JPEG images should have
filetype &C85.

4. Viewing images and the File List

When SwiftJPEG is running, you can drag JPEG images to
the icon bar icon to load them. They do not have to have the
correct filetype (&C85) set first. Double-clicking on an
image which does have the correct filetype will usually load
it too, though if you have any other applications running
which can also load JPEG images this way, one of those
might catch the image first.

A collection of images can be loaded by either selecting a
group in the Filer and dragging that selection to the
SwiftJPEG icon bar icon, or by dragging a directory to the
icon bar icon. In addition, by default, if you just drag on a
single image SwiftJPEG will search the rest of the directory
from which the image came for any other files of filetype
&C85 and will queue these for viewing too. It'll still load
the image you asked it to load first. When you drag on a
directory, SwiftJPEG searches the contents for any files of
type &C85 and looks in any subdirectories it finds as well,
so you can load a complete collections of images very
easily. With directories, once SwiftJPEG has queued all the
JPEG files available, it will load the first one it found.

All queued files are held in the File List, which is kept for
as long as SwiftJPEG runs or until you next try to load one
or more new files by dragging them to the icon bar icon or
double-clicking on them. You can easily move through the
file list to browse through the various queued images.
Navigation through the file list is described later.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 3 of 29

i Useful tip

SwiftJPEG supports two useful
modifier keys that you can hold down
when dragging images or directories
to the icon bar icon:

• Ctrl (Control) – only add the
specific image that was loaded to
the queue; do not add the contents
of the directory in which it lies
(handy if it takes a long time to
search for other files, e.g. because
the directory has a great many
images in it).

• Shift – append the image details
to the existing file list (normally, if
images have been shown, any new
images dragged to SwiftJPEG are
loaded into a new list). When
using this modifier key, if you drag
on a single image then only that
image is appended onto the list –
an automatic directory search is
never done.

By holding down both keys when
loading images, you can build up a
slideshow containing a series of just
the specific images that you drag to
SwiftJPEG to be shown in the order
that you dragged them.

5. The Display window

Using the default settings, whenever SwiftJPEG loads a JPEG image it shows it at 1:1 scaling in the
Display window on the RISC OS Desktop:

Clicking with SELECT (the left mouse button) on the icon bar icon will bring the window to the front of
the stack, in case it has been hidden by other windows. If you close the window, the JPEG image is
removed from memory but can easily be reloaded using the main menu (see later). If you click on the
window with SELECT or ADJUST (the right mouse button), it will gain input focus and the following
keys can be used:

• Right cursor – go forwards in the File List to the next available image, if there are any
• Left cursor – go backwards to the previous available image, if there are any
• Down arrow – skip forward 10 images or to the last available image, whichever comes first
• Up arrow – skip backwards 10 images or to the first available image, whichever comes first
• Escape – close the window and remove the JPEG image from memory
• F, Enter or Return – view the image in Full Screen mode (more on this later)
• F3 – save a copy of the current image
• I – open the picture information window as a menu (more later; press Escape once to close it)

If you press MENU (the middle mouse button) the main menu opens. This can also be opened by clicking
MENU over the icon bar icon. Dragging with SELECT from within the Display window to a Filer window
saves a copy of the image using the same leaf name as the original. This is really useful if you are
previewing a set of images, only wishing to keep some of them. You can have a Filer window open for
the directory of the images you want to keep, flick through the original images with the arrow keys or
main menu (see below), and drag directly from the Display window to the Filer window to save copies
of those that you like.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 4 of 29

6. Menus

Main menu

The main menu is shown to the right. It contains the following options:

1. Info

Move the pointer to the right to display some information about the version of
SwiftJPEG in use.

2. Zoom

Move the pointer right to open a small window that lets you zoom in or out of the
current image. The window is described in more detail later.

3. Picture

Move the pointer right to display the picture menu (see below). Greyed out if no image is loaded.

4. Full Screen...

Shows the currently loaded image in Full Screen mode. A large amount of SwiftJPEG's functionality
is wrapped up in Full Screen mode, which provides a flexible set of slideshow and viewing options
described in full in their own section later.

5. Next image

Go forwards in the File List to the next image relative to the one currently being viewed, or recently
loaded. Greyed out if there is no next image to load; this is usually because you have reached the
last valid item in the File List.

6. Reload image

Reload the most recently loaded image. Greyed out if no images have yet been loaded, or if there is
no valid item available to be loaded.

7. Previous image

Go backwards in the File List to the previous image relative to the one currently being viewed, or
recently loaded. Greyed out if there is no previous image to load; this is usually because you have
reached the first valid item in the File List.

8. Choices...

Open the Choices dialogue box. This is explained in more detail later.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 5 of 29

9. Quit

Shut down SwiftJPEG. This option is only available when the main menu is opened from the icon
bar icon.

Picture menu

The picture menu is accessed through the main menu and is shown below:

The two options are:

1. Info

Move the pointer right to open the Picture Information dialogue box. This gives a description of
various attributes that the image has, such as its size and the date stamp on the file:

The first four lines give the image pathname, size in bytes, and height and width in pixels. These are
always filled in.

The next three lines (camera make, model and picture date) come from information contained
within the JPEG itself. Some JPEG images, but not all, contain this extra detail. It is particularly
common in images from digital cameras. “Picture date” usually tells you when a photograph was
taken. Since it is contained within the image itself, the picture date is independent of the date stamp

SwiftJPEG 1.10 User Guide, 24-Feb-2005 6 of 29

on the file, which is an external property maintained by
the file system on which the picture lies. You can make
copies of the file, for example, and they will be stamped
with the date on which they were copied, without
affecting the internal record of when the image was
created. If any of the three fields are not present in the
JPEG image or are in a format which is not understood,
“Unknown” is shown.

The last entry in the dialogue box gives the date stamp
on the file itself. This lets you know when the image was
stored on disc, or copied, but is not necessarily a
reflection of when the image was originally created. The
information is always filled in.

2. Save

Move the pointer right to open the Save Copy dialogue
box. This is a standard RISC OS save box; drag the icon
to a Filer window to save a copy of the file, typing in a
new filename if you want one, or type in a complete
pathname and press Return or click on the OK button
to save the picture.

If you just want to make a copy of an image in a new directory, you can drag straight from the
Display window to a Filer window to save a copy using the same leafname as the original image.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 7 of 29

i Digital cameras and JPEGs

Almost all digital cameras write
extended forms of JPEGs sometimes
called 'EXIF images', after the
technical name of the area where extra
data is stored.

If you modify an image in some
photograph editor application, you
may destroy or change the EXIF
information. For example, the “Picture
date” may be updated to the date when
the image was edited, rather than the
date when the photograph was taken.

Some versions of the RISC OS JPEG
plotting software cannot understand
EXIF images. SwiftJPEG translates
the images after loading them so that
they can still be viewed. The file on
disc is not altered in any way and
saved copies will be identical to the
original, including the EXIF data.

7. The Zoom box

The Zoom box is accessed from the main menu:

The three radio buttons provide options as follows:

• The “Fixed zoom” setting, if selected, will enable the writable fields and 'bump arrows' at the top of
the window. These let you set a fixed scale factor of 20:1 (twenty times larger than normal) down to
1:20 (one twentieth of the normal size).

• The “Fit to area” setting selects a select a scale factor that makes the image occupy as much of the
Desktop as possible without any of the image being cropped (so you don't have to scroll to see any
of it). The Display window will be resized to as large as is required to fit in the image. If you have
configured your machine to stop windows covering the icon bar, SwiftJPEG will obey this setting.

• The “Fill area” setting selects a scale factor that makes the image occupy as much of the Desktop
as possible, filling the whole screen with the exception of the window tools around the Display
window. For most images, this will result in cropping either horizontally or vertically, so you will
need to use the scroll bars to see the whole image.

At the bottom is a slightly cryptic option button, “Only < 1:1”. This
restricts the scale factor used for the “fit” or “fill” options so that an
image is only ever shrunk down to fit on screen, but never scaled up.
When JPEG images are scaled up, they become blocky (you can more
easily see the individual pixels that make up the image).

You may not like this blocky effect, but may still want to be able to
see the whole image without having to scroll around. If so, turn on
this option. Now, small images will not be zoomed in to fit or fill the
available viewing area, but large images will still be zoomed out so
that you can see the whole picture.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 8 of 29

i Making changes last

Whenever you use the zoom
box, the settings you make
apply just to the current
image being viewed.

If you want your changes to
apply to all images, use the
Choices dialogue box
(described later) to specify
the zoom settings.

8. Limitations with zooming

The zooming done by the OS JPEG plotting routines is fast but not high
quality. If the screen mode for the Desktop supports less than 16M colours
and in particular 256 colours or less, you will see that images scaled up
above their normal size look very “speckled”. This is because the OS does
something called dithering to make an image look better in a lower number
of available colours on screen, but this relies on pixels being small and hard
to individually make out. The first picture on the left shows a section of sky
from a digital photograph dithered down to 256 colours – it looks fairly
smooth.

When an image is scaled up, the OS scales the dithered pixels too, so they
become very easy to see. It would be better if the OS scaled the pixels from
the JPEG image first, then dithered the result as if it were one much larger
image, but at the time of writing it does not do this. The second picture on
the left shows a zoomed section of the same sky picture from above.

When the OS routines zoom out of (scale down) an image they just stop
plotting rows or columns as required to make the image fit with the
requested scale factor. No attempt to spread errors from neighbouring rows
or columns is made. This can create a “stepped” look to sloping edges and
have an odd effect for patterned parts of images, such as chequered fabrics
or metal gratings. If you are in a mode with less than 16M colours, then
again the dithering issue crops up. This time, dithering pixels that were
being used to simulate more colours than are really available get removed as
rows or columns don't get plotted. Images will often take on a mottled
appearance, as shown in the third image on the left.

Again, it would be better if the OS scaled down the original image, then
dithered the result, but this is not how things work at the time of
writing.Ultimately, if you are in a display mode with 16M or 32K colours
available, scaling works reasonably well. In 256 colours or less, the display
quality will be fairly poor, particularly if an image is scaled down (zoomed
out) – you may be best off sticking to 1:1 scaling.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 9 of 29

Above: 1:1 zooming

Above: 6:1 zooming

Above: 1:3 zooming

9. Full Screen mode

SwiftJPEG includes a way of viewing images full screen, without the Desktop visible. It can be told to
operate a slideshow, waiting for a predefined number of seconds before advancing automatically to the
next image. You can set up fades on RISC OS 3.5 or later; the drawing of the JPEG is hidden, then the
image is faded smoothly in from black or 'flashed in' from white. It can be faded or 'flashed' back out
again too; both actions are independently configurable with a range of different fade speeds available.

Some points to note:

• Images are shown outside of the Desktop, and the machine single tasks – other applications do not
carry on running.

• The screen mode used to display the image may be changed from that in which the Desktop is
displayed. Behaviour is completely configurable.

• Images can be zoomed in and out whilst in Full Screen mode, though the zoom settings are
restricted to some predefined values.

The keys defined for Full Screen mode are as follows:

• F, Enter or Escape – return to the Desktop.
• Right cursor, SELECT – go forwards in the File List to the next

available image, if there are any.
• Left cursor, B, ADJUST – go backwards to the previous available

image, if there are any.
• Down arrow – skip forward 10 images or to the last available

image, whichever comes first.
• Up arrow – skip backwards 10 images or to the first available

image, whichever comes first.
• I, MENU – show some information about the current picture.
• Z – change zoom mode. Cycles through zoom settings – the fixed

zoom ratio set up in the Choices dialogue box, fit to screen without
cropping, fill screen completely cropping if necessary, and a
special 1:1 mode if the fixed zoom ratio is not already itself 1:1.

• P, Space Bar – pause a slideshow, when a slideshow delay has
been set up in the Choices.

• Q – if fading is turned on, pressing Q jumps to fully faded in or out
so you don't have to wait for the fade to complete.

• 0-9 – set a fixed zoom size according to the table below:

Key Zoom up Key Zoom down
1 1:1 6 1:1
2 2:1 7 1:2
3 3:1 8 1:3
4 4:1 9 1:4
5 5:1 0 1:5

SwiftJPEG 1.10 User Guide, 24-Feb-2005 10 of 29

i Useful tips

In Full Screen mode, any
key that is not already used
for something else will move
forwards through the File
List to the next image.

If you overlay picture
information using the I key,
you can remove it by forcing
the image to redraw: use one
of the number keys listed in
the table below.

When no slideshow timer is
set (the slideshow delay in
the Choices dialogue box is
zero), the P and Space Bar
keys move onto the next
image.

Various overlaid items are briefly shown in the bottom left hand corner of the screen in response to
some key presses. They indicate that a particular change has been made, as follows:

Normal zoom (1:1)

Zoomed in (>1 : 1)

Zoomed out (1 : >1)

Fit to screen (no
cropping)
Fill screen (cropping if
necessary)

Slideshow paused

You cannot scroll around an image in Full Screen mode, to view parts of it that have been cropped off
the edges of the screen due to a particular zoom setting. That's what the Desktop is there for!

Many features of Full Screen mode as described above can be changed using the Choices dialogue box,
described in the next section.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 11 of 29

10. The Choices dialogue box

Accessed from the main menu, the Choices dialogue box provides an extensive array of options that
modify SwiftJPEG's behaviour. To help make those options less bewildering, the dialogue box is
separated into several groups as shown below:

Display section

On the left hand side of this section is a way to control dithering – dithering is a way of showing
images with lots of colours in screen modes with fewer colours. For example, if the screen mode only

SwiftJPEG 1.10 User Guide, 24-Feb-2005 12 of 29

has red and yellow colours available, orange can be simulated by making a pattern of alternating red
and yellow pixels. If the pixels are small, the effect is quite successful. The RISC OS JPEG routines
provide three dithering settings – a high quality mode, which gives good results but is quite slow; a
medium quality mode, which produces average to poor results but is quite fast; and no dithering, which
gives the fastest display but low quality output.

If you are using a 32K or 16M colour screen mode, these options will have little or no visible effect; in
256 colours or less the settings will have a very obvious impact. Note that on RISC OS 3.1 it is not
possible to use dithering in 16 colours or less as the OS routines do not work properly in such cases;
SwiftJPEG automatically turns off dithering in such cases, and will turn it back on if you return to a
256 colour mode.

On the right of the Display section is the Full Screen mode selector. This is how you tell SwiftJPEG the
way in which it should choose the screen mode for full screen display. The best choice will depend on
your machine's capabilities, the kind of images you are viewing, and the reason why you are viewing
them:

• “Use current mode” shows all images in the same mode as the Desktop. This avoids the need to
change screen modes at all, and can be particularly useful if you have a monitor with a very
restricted range of resolutions such as an LCD panel.

• “Best fit to picture” is the default setting. First, a screen mode which can show as many pixels
horizontally and vertically as the image contains is found, with the screen mode being as close to the
image size as possible but no smaller than it. The image is never cropped off the edges of the screen,
unless it's such a big image that there is no mode large enough to show all of it. Then the largest
number of colours available in that mode is selected. If you have set up a fixed zoom setting, then
the resolution of the mode is chosen according to the image's size after scaling. For all other zoom
settings, the resolution of the image at 1:1 scaling is used as the basis for screen mode selection.
Only square pixel modes will be chosen.

This selection is a good 'all-rounder', matching the screen to the image, but it does mean that there
could be lots of mode changes if your images have very varied sizes, and sometimes odd modes may
be chosen that you wouldn't normally use which your computer does support, but don't work very

SwiftJPEG 1.10 User Guide, 24-Feb-2005 13 of 29

well with your monitor (SwiftJPEG has no way to assess how well a mode might be displayed so
treats all modes equally in this respect).

• “Use biggest” finds the largest resolution (X and Y pixels) mode, and uses the largest number of
colours that your machine supports at this resolution. Again, only square pixel modes will be
chosen. This avoids the need for many mode changes and can be useful when you have a lot of very
large images to view, with a few smaller ones scattered around the collection.

• “Use most colourful” finds the screen mode with the largest number of colours (which will usually
be 256 on a RISC OS 3.1 machine, or 16M on anything newer). Then the mode with the greatest X
and Y resolution in that colour depth is chosen. Once more, only square pixel modes are chosen.
This is a good setting if you want to see the images in the best possible quality (in terms of colour
depth) at all times, even if the image might get cropped. It makes a lot of sense when used in
conjunction with the “fit to screen” or “fill screen” zoom options.

Finally, you can type in a mode number (RISC OS 3.1 upwards) or mode selector string (RISC OS 3.5
upwards only) if you want to specify an exact mode to use. This is most commonly used when using
image double banking – more on this later.

Desktop actions section

Here you control how images are handled in the Desktop. The “Ignore
image errors” option suppresses errors that occur when trying to load a
picture in the Desktop. It can be useful if you are browsing through a group
of pictures and don't want to be interrupted by error boxes if one or two of
them cannot be shown for some reason. Normally this setting is disabled,
so you get told about problematic images.

The default zoom setting for the Desktop is chosen here too:

The options are all analogous to the Zoom box shown from the main menu. You can select a fixed
zoom setting, fit the picture to the screen without cropping, fill the screen, cropping if necessary, and
set an override which will only shrink, but never enlarge images (“Only scale down” is analogous to
the Zoom box “Only < 1:1” option).

Full Screen actions section

This section works in exactly the same way as the “Desktop actions” section, but applies to images
shown in Full Screen mode. By default the ignore errors option is on.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 14 of 29

Full Screen behaviour section

Here, further aspects of SwiftJPEG's behaviour in
Full Screen mode may be modified.

A timer can be given for slideshows. Zero waits
for a key press before moving onto the next
image. Non-zero values give the number of
seconds for which to wait before moving to
another image automatically. The slideshow
advances forwards through the images, or runs
backwards if you press a key to view a previous image during the show – so you can have the
slideshow advance forwards or backwards through the images as you see fit.

With “Always show images in Full Screen mode” you can choose if images, when loaded, are
automatically shown full screen rather than in the Desktop. You can also choose if only the contents of
directories are automatically shown full screen with “Always show directories in Full Screen mode”.
This lets you view individual images casually in the Desktop, but easily start a slideshow by dragging
on a directory full of pictures.

Using “Close Display window after Full Screen view” you control whether or not the image most
recently shown in Full Screen mode stays loaded and visible in the Display window, or is closed, when
you return to the Desktop.

Finally, you can try to use screen banking to store the next image by turning on “Use screen banks to
cache next image”. To explain this: RISC OS supports the idea of having more than one copy of your
screen display. One copy can be redrawn whilst the monitor is displaying another, so the action of
redrawing is hidden. Normally, you see RISC OS plotting the JPEG with SwiftJPEG (it 'rolls' up the
screen). Using screen banks, the plot is hidden and the switch from one image to another is virtually
instantaneous.

SwiftJPEG also uses the time while you're looking at a 'current' image to load and draw the next one in
the screen bank you can't see. Thus, you don't have to wait around when you want to move to that next
image – it's instantly available. SwiftJPEG always assumes that if you just went to a 'next' image, it
should load the next one after that too, or if you went to a 'previous' image, it should load the one just
before that as well. However, if you change direction – say you were viewing images forwards, then
asked to go backwards, or vice versa – there will be a delay, as the wrong image was cached in the
screen bank, so SwiftJPEG has to throw it away and plot the correct one.

There has to be enough video RAM available to store two copies of your screen mode for banking to
work, and the screen mode cannot change between banks. If you ask SwiftJPEG to find the best fit
mode to the picture, banking can't work as the screen mode may change between images. If you ask
SwiftJPEG to use the most colourful or biggest mode, on some machines banking might work but
usually it won't – your machine's video RAM is probably already almost full with just one copy of the
highest resolution or most colourful mode that it is capable of displaying. This is where the ability to
specify your own fixed screen mode comes in handy – if your machine can do one bank at 800x600 at
16M colours, say, it'll be able to do two banks at 800x600 in 32K colours.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 15 of 29

Some extension graphics cards don't support screen banking – some versions of the Viewfinder
firmware do not, for example. Screen banking is also less useful on machines with more limited
graphics hardware as you might have to make heavy sacrifices on image quality to be able to fit two
screen banks into your machine's available screen RAM. This is why it is turned off by default – image
quality is prioritised over speed of display. That said, if SwiftJPEG cannot use screen banking, it just
falls back to its normal way of displaying images. There are no ill effects from trying to use banking
but not being able to, so if you like the fast switching effect, you can leave it turned on.

Full Screen fade-in and Full Screen fade-out sections

These sections are only available on RISC OS 3.5
upwards. On earlier versions, they will be greyed
out. When a fade-in option is selected, the JPEG
image is plotted with the screen set to black, then
(for “Fade from black”) 'faded in' to normal
brightness, or (for “Flash from white”), from a
full white screen to a normal brightness. If you set
a fade-out option, then when you move to another
image or exit Full Screen mode, the display will be faded back to black (for “Fade to black”), or (for
“Flash to white”) to bright white then quickly back to black. These options are most useful if you are
creating some kind of slideshow and want to have smooth transitions between images.

The sliders in each section let you control the speed of fading – to fade in or out faster drag the slider
down to the left; for a more gentle fade in or out, drag the slider towards the right.

SwiftJPEG uses the same mechanism for fading as the application “Gamma” by Rob Davison,
rdavison@xtra.co.nz. If the Gamma application is loaded before SwiftJPEG then SwiftJPEG takes
note of any settings made in that application and applies them to the fades. So if you've made
everything appear in red-on-black or some other odd setting, this will be accurately reflected in the
fade... The !Gamma application is available from, at the time of writing, the AcornSearch FTP archive:

http://www.geocities.com/SiliconValley/7320/softw.htm
http://www.geocities.com/SiliconValley/7320/archives/gamma.zip

Miscellaneous section

The number of images that are skipped when
pressing the up or down arrow keys is selected in
this section of the Choices window. This affects
both the Desktop and Full Screen mode. Four
other options are available:

• “Repeat display of groups of pictures”
makes SwiftJPEG loop around through a File
List indefinitely. It allows you to create a

SwiftJPEG 1.10 User Guide, 24-Feb-2005 16 of 29

slideshow that repeats forever, or flip through from the start to the end of a group of images very
easily (just go “backwards” from the first image). The option is turned off by default.

• “Grab input focus on loading new image” makes SwiftJPEG claim “input focus” (the ability to
receive key presses in the Desktop) whenever a new image is loaded. This is the default behaviour
so that you can use the various key shortcuts to work through a File List, enter Full Screen mode and
so-on. However, sometimes you might want the input focus to stay where it is, for example, in a text
editor where you're writing a description of a set of images you wish to browse through.

• “Only find available screen modes once” means SwiftJPEG will only find the biggest and most
colourful screen modes available on your machine once, rather than trying to find them each time an
image is shown in Full Screen mode. Usually this can be left on, but if you have a machine where
the available modes change a lot at run-time turning the option off will let SwiftJPEG recheck for
any new modes without having to be restarted.

• “Automatically set filetype” is turned on by default, making SwiftJPEG set the file type of any
JPEG image that it successfully loads and displays but does not already have the JPEG filetype of
&C85. If you want your files to be left with a different filetype, make sure you turn this option off.

Buttons

The four buttons at the bottom of the window
work as follows:

1. Save

Permanently save the choices inside the !SwiftJPEG application directory and close the window.

2. Default

Restore the values shown in the window to default settings. You can then accept the defaults with
the “Save” or “OK” buttons, or discard them with the “Cancel” button.

3. Cancel

Throws away any changes you may have made in the Choices dialogue box and closes the window.

4. OK

Accepts the settings in the Choices dialogue box and closes the window. The settings are not saved
permanently – quitting and restarting SwiftJPEG would lose them. To store changes permanently,
use the “Save” button.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 17 of 29

11. Using SwiftJPEG on RISC OS 3.1 and RISC OS 3.5

The RISC OS module “SpriteExtend” was extended in RISC OS 3.6 and upwards to provide the JPEG
plotting routines upon which SwiftJPEG relies. To use SwiftJPEG on an earlier version of the
operating system it is necessary to either load a later version of the module, or alternative support
modules that provide the same facilities.

RISC OS 3.5

There are two fairly simple choices:

1. Use a new version of the SpriteExtend module. Version 0.99 is in fairly common circulation as it
was distributed on the Acorn FTP site for a while, and so is still available in the FTP site archive
(see link below). Later versions may also work.

http://acorn.riscos.com/riscos/releases/spriteextend.arc

This is a simple and self-contained approach that works well.

2. Use the JPEGRender and JPEGMsgs modules. These provide the JPEG plotting facilities for RISC
OS 3.1 or 3.5. They were distributed with the Acorn web browser Browse, so if you can get hold of
those copies, do so – version 1.02 of JPEGRender in particular. In fact v1.02 is a little better than
SpriteExtend 0.99, and you won't be replacing a core system module just for the JPEG features with
this approach. An older version of the modules can be found in a universal !Boot archive from the
same site as SpriteExtend:

http://acorn.riscos.com/riscos/releases/UniBoot/
http://acorn.riscos.com/riscos/releases/UniBoot/uniboot.zip

The modules are in “!Boot.Resources.!System.310.Modules”. These older versions aren't quite
as good – no better than SpriteExtend 0.99, so the odd image that might work with the newer
modules won't work with these - but still do the job by and large.

RISC OS 3.1

The choices are slightly different for this early version of the operating system.

1. Again, use the JPEGRender and JPEGMsgs modules. These are easily the best approach for RISC
OS 3.1, though dithering will not work in 16 colour modes or less.

2. You could alternatively try to load a new version of the SpriteExtend module, such as v0.99
originally from the Acorn FTP site. However, this version of the module assumes an operating
system feature called Dynamic Areas is available; RISC OS 3.1 does not have this feature. To make
the JPEG plotting routines work, you need to use Justin Fletcher's Dummy Dynamic Areas (DDA,
or 'Dummy') module, version 1.07 or later. This is a patch which provides the relevant features,
though you cannot use a RAM disc (RAMFS) when it is loaded. Some JPEGs that might work with
JPEGRender may fail with this approach, but on the plus side the DDA module keeps all of its
working data in the RAM disc area, whereas JPEGRender dumps it in the RMA. RISC OS 3.1 users

SwiftJPEG 1.10 User Guide, 24-Feb-2005 18 of 29

are normally all too aware of the module area filling up or becoming too fragmented, so you may
prefer to try this alternative method for that reason alone.

ftp://arcade.demon.co.uk/data/075000/077100/077108

Where do I put the modules?

On either operating system version you will need to put the modules in “!System.310.Modules” (new
!System structure) or “!System.Modules” (old !System structure). The filenames are “JPEGRender”
for the JPEGRender module; “JPEGMsgs” for the JPEGMsgs module; “Dummy” for the Dummy
Dynamic Areas module; and “SprExtend” for SpriteExtend.

Other issues for older operating systems

Note that on RISC OS 3.1 SwiftJPEG uses the system sprite area to store the File List. A side effect of
this is that only one copy of SwiftJPEG can run at a time on RISC OS 3.1 – RISC OS 3.5 upwards does
not have this restriction. You may notice a sprite called “sjpg_filelst” in the system sprite area; this
is where the File List gets stored. Don't tamper with this sprite! SwiftJPEG will delete it on exit.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 19 of 29

12. Using SwiftJPEG's Full Screen mode and ViewFinder

If you are using SwiftJPEG with the ViewFinder graphics card in the Desktop, things should work as
for any other Desktop application. However, if you want to perform Full Screen mode operations,
please note that the level of integration that ViewFinder provides with the OS is insufficient for
SwiftJPEG to be able to determine best available screen modes. It will tend to select only modes that
were available under RISC OS. When returning to the Desktop, SwiftJPEG will have correctly read the
previous mode information, but will not be able to restore it unless it could be displayed without your
ViewFinder card present; you will be left in the last selected Full Screen mode.

It is possible to specify ViewFinder-only resolution, colour depth and frame rate combinations using
the mode string in the “Full screen mode” menu in the General Choices window. Unfortunately, the
operating system will claim that these modes are not available when SwiftJPEG checks for the string's
validity, so you must only directly specify screen modes that would work without your ViewFinder card
being present.

If you ask SwiftJPEG to enter modes of 4 or 2 colours, it will do so, but under certain ViewFinder card
types no usable display will be produced as some do not support 2 or 4 colour modes. If your previous
Desktop mode was suitable for ViewFinder only, you will then end up stuck in the 2 or 4 colour mode
when you go back to the Desktop. You'll need to use the command line to restore a usable display (e.g.
F12, “WimpMode X800 Y600 C256 F60”).

If ViewFinder in future presents a deeper integration with RISC OS, these problems should go away by
themselves. It should be noted that this lack of integration is not a bug in ViewFinder – it's simply not
implemented, and if it were added in future, it would be added as a feature addition rather than a bug
fix. In the mean time, the best bet is usually to select a resolution and colour depth you think would be
most appropriate for the batch of JPEGs you wish to view, put the Desktop into that mode, and select
“Use current mode” in the “Full Screen mode” menu in the Choices window.

These comments refer to using SwiftJPEG v1.10 with ViewFinder firmware version 1.47. At the time
of writing, I have not tested with earlier or later versions of either.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 20 of 29

Appendix A: Contacting the author

Snail mail:

Andrew Hodgkinson
52 Beaulands Close
Cambridge
CB4 1JA

E-mail:

ahodgkin@rowing.org.uk

On the web – SwiftJPEG:

http://homepage.ntlworld.com/ahodgkin/swiftjpeg/

If the NTL Web space isn't updated or available, try my e-mail address nstead. This should stay
correct even if the Web site moves.

On the web – personal:

http://www.ampcast.com/pond
http://nines.rowing.org.uk/

SwiftJPEG 1.10 User Guide, 24-Feb-2005 21 of 29

Appendix B: Thanks

Hipposoft would like to thank (in no particular order!):

Graeme Barnett and Neil Coffey for feedback relating to SwiftJPEG in the early stages, and
particularly Stuart Halliday and Stephen Borrill for various suggestions and bits of info; and everyone
else who's e-mailed me about various things since then, including Stuart Bell who made me realise I
shouldn't completely drop the Junior manual format in favour of HTML (nearly ten years on, I've
finally crossed into the world of PDF!), and was instrumental in getting SpriteExtend released for
RISC OS 3.5 users.

John Sullivan and Ben Blaukopf for help on user interface and some programming issues, and for ideas
on improving the HTML manual.

Chris Cox of Acorn for a very positive response to my request for a distribution of the JPEG-aware
SpriteExtend for RISC OS 3.5 machines, and Charles Whyte of ART, to whom the request eventually
got transferred (unfortunately it required a full software license and I couldn't afford the fee); and of
course Tim Caspell who pursuaded ART to do the public release on the Acorn FTP site!

Ragnar Hafstað and Dick Alstein for !BasCrunch v1.02, which was used to compress the original
BASIC source.

André Timmermans for pinning down the Select 2 / 4.32 JPEG_Info call bug.

Terry Blunt, Bernard Veasey, Richard Hallas, Paul Sprangers, Daniel Ellis, Chris Walker and Stefan
Bellon for putting up with beta versions and providing invaluable suggestions, requests and bug
reports.

Many others for feedback, feature requests and beta testing.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 22 of 29

Appendix C: Technical notes

Use of Alt+Break

If you use Full Screen mode with bank switching enabled and often kill applications using Alt+Break,
you should read this technical note.

A small ARM code routine is installed whilst a JPEG is plotting, which sits looking for key presses
whilst the machine is otherwise busy doing the image plot. This allows key presses to be recognised in
Full Screen mode when an in-the-invisible-bank banked image plot is happening; you see an hourglass
appear until the plot completes, then the key press gets acted upon. Because SwiftJPEG is a Wimp
application the period for which the handler is installed must be minimised – Alt+Break could kill the
application with the handler still present, and crash the machine. This does mean that for large images
(in terms of file size) which may take some time to load, there is still a period when a banked image is
loading but is not yet plotting when key presses may be ignored. So if key presses seem to be
unresponsive when using image banking, check and see whether this is just because you have large
image files that your machine is taking a while to load (you should find that with image double-
banking turned off, keys are very responsive once the JPEG image has finished plotting).

Caveat - never use Alt+Break to kill SwiftJPEG when it is running in Full Screen mode unless you
are sure that it is not in the middle of plotting an image off-screen. If you use Alt+Break whilst a
banked JPEG plot is in progress, the interrupt will happen immediately after the plotting SWI
completes but before the handler gets removed. If you choose to kill SwiftJPEG, your machine will
crash. It is perhaps a shortcoming of RISC OS that utilities like this require implementation within
modules rather than applications to run safely.

Troubleshooting – stripy images and ColourTrans aborts

If you find certain JPEGs do not plot properly – they are stripy – then they've probably been rotated,
using a flag in the image header. SpriteExtend 0.99 and JPEGRender up to 1.02 do not handle this
properly. However, a patch is available that fixes the problem. Search on Google Groups
(http://groups.google.com/) for details.

Some people reported aborts in ColourTrans with RISC OS 3.1 under Virtual A5000. I have tested
JPEGMsgs 0.01/JPEGRender 1.00, JPEGMsgs 0.01/JPEGRender 1.02, and SpriteExtend 0.99/DDA
1.08 beta with the ROM ColourTrans and all worked. I then soft-loaded ColourTrans 1.57 as well; now
only the newer JPEGMsgs 0.01/JPEGRender 1.02 combination worked – both the older JPEGRender
and SpriteExtend failed with an abort. If you see aborts, check to see if your ColourTrans module has
been updated, for example by other installed software.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 23 of 29

Appendix D: Development history
Version 1.10 (11-Sep-2004)
Incorporating changes from 1.10 beta versions, plus a rewritten PDF manual, slight rearrangement of the Choices window
template and change to the !Run file to load SpriteExtend 0.99 as well as JPEGMsgs/JPEGRender/Dummy. Version is feature
complete according to informal specification of new features based on feature requests and ongoing beta testing.

Version 1.10-B5 (June 2004) Known problems
Menus aren't all closed when a new image is loaded. Since it doesn't seem to be possible to close a specific single menu,
this does mean that the main menu, if open, ends up "behind" the display window if a new image is loaded using, say, the
cursor keys. It's the lesser of two evils as it allows Director menus and similar to stay open.

Version 1.10-B5 (June 2004) New features
Position of mouse pointer is restored as well as the screen mode when exiting full screen view (this might be considered
a bug fix).
The Zoom window for a loaded image now carries three radio buttons, which when the window is first opened after loading a
new image will reflect the zoom settings for the Desktop as specified in the Choices window. You can modify the zoom
setting for just the loaded image using the radio buttons and the zoom values if you wish, and an "Only < 1:1" option
button - which means "don't automatically scale up above 1:1" - is present and used for the "Fit to area" and "Fill area"
choices. This all matches similar options available in the Choices window. When you reload the image or load a new image,
it will revert back to the Choices settings. When the temporary zoom setting is changed, the Display window resizes to
fit the new settings, both increasing or decreasing size as required. In earlier versions the window tried to maintain
the previous size which wasn't usually what you wanted it to do. Note that any temporary zoom setting in the Desktop is
reset to the Choices values if you go into and back out of Full Screen mode.
Double-clicking with Select or Adjust on the Display window enters Full Screen mode, just as if "Full screen" were chosen
from the menu. Dragging with Select in the window allows you to save the current image with a default filename (the same
leafname as when the image was loaded, or ScrapFile for application-to-application transfer items). This makes it easy to
work through a set of images and see if you want to keep them - save the "keepers" into another directory, say, and just
drag from the window directly without having to use the menu and Save As dialogue box.
Title bar in "Save as" window change to "Save copy" to highlight that a copy of the image is being saved; SwiftJPEG still
reloads the image from its original location and continues to load other images from the group / directory related to the
original image location.
Doesn't reload the current image when going into Full Screen mode now.
Input focus is given to the Display window if it is reopened by clicking with Select on the icon bar. An iconiser is told
that the window has closed too, as this seems to be the only way to get it to remove the icon if we re-open the window
"under its feet". Broadcasting this Message_WindowClosed message seems to be the defined way to do it, but the window
isn't closed at all. This is a broken part of the protocol.
The Close icon has been removed from the info windows; whilst I prefer to have it as the windows have no other buttons
(unlike Save As), on RISC OS 4 it introduces an iconise icon which if accidentally clicked on can cause problems.
Iconising with Shift+Click on the close icon also gives undesirable side effects so it's better to get rid of it.
For pictures with EXIF information - typically those taken by digital cameras - the camera make and model, and the
picture's internal record of its creation/modification date, will be extracted where possible and shown in the picture
information window. The date stamp for the actual physical file itself is also shown (the two usually differ because the
picture has been copied out of the camera onto some filesystem some time after it was originally taken). In Full Screen
mode, the information overlay now shows the picture's creation/modification date if it is available, else it shows the
date stamp for the file.
Pressing "I" when the Display window has input focus now opens the picture information window (as a menu) next to the
pointer.

Version 1.10-B5 (June 2004) Bugs fixed
Fade in/fade out when used with screen banking appeared to not work, as you had to wait for an image to plot whilst faded
out. This was actually waiting for the *next cached bank* image to load, because the fade in was done after, rather than
before, the cache call. Moving the point where the fading is done gives a much more pleasing result with the fade in and
out appearing to move from one image to the next instantly and the hourglass shown when key presses are made during
plotting is now visible rather than hidden by the gamma fadeout.
Information overlay in Full Screen mode didn't appear reliably when screen banking was used - if the relevant key was
pressed during the plot of the off-screen image, it would fail because of a mistyped key number in the key handler.
Checking of mouse buttons could be overridden by OS_Byte values in a key scan loop in Full Screen mode; the right and
middle mouse buttons would operate erratically as a result, depending on whether OS_Byte or a MOUSE call caught the
button change. Now MOUSE overrides OS_Byte.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 24 of 29

Since the split between ignoring errors in the desktop or in Full Screen mode was introduced, occasionally a load error
from Full Screen mode might be seen even if the relevant 'ignore' setting was turned on. The related code has been tidied
up and this bug fixed in passing.
When an image was loaded from a directory and the directory contents cached, subdirectories would be included. This could
lead to "not found" errors if stepping through to such an item. Subdirectories are no longer stored when storing
directory contents based on loading a single image.
If the dithering method was changed in the Choices window, the display window didn't redraw fully. It now does.
Caret handling was a little eratic; SwiftJPEG endeavours to restore one level of previous caret position, but for various
reasons would not do this reliably. Behaviour has been considerably improved.
Bounding box of drag for saving items was set to the drag box, rather than the pointer, due to incorrect flags to
Wimp_DragBox. Correct flags are now set.
Typing error meant application to application transfers would fail with a "Mistake at line..." report. One other instance
of same class of error found and fixed which would only show up when a particular out of memory report should have been
raised.
Close icon removed from save box and button sizes reduced to improve style guide compliance.
The icon bar clicking behaviour has changed, now that it is very easy to get into Full Screen mode with so many key press
and clicking options available - Select re-opens the display window as before, if an image is loaded; Menu opens the main
menu; and Adjust opens the Choices window.

Double-clicking on a JPEG image to load SwiftJPEG now does include the directory contents as well as just the image,
which was the previous behaviour. I can't remember if this was intentional or an oversight, but it's easy to change if
you want to - see around line 220 in the uncompressed !Runimage source.
If "Don't scale up" was set, then fixed zoom settings of > 1:1 would be ignored as well as the "fit to area" and "fill to
area" scaling. It is now possible to set a >1:1 scaling when "don't go above 1:1" is set, as this flag is only intended
to apply to the automatically calculated zoom settings, not the manually specified values.

Version 1.10-B4 (31-Apr-2004) New features

Optional dual bank support, to load the next JPEG into the offscreen bank whilst you look at the current item (if you
move forwards, it'll cache the next item; if you start going backwards, it'll cache the previous item; so when changing
direction, the cached item has to be discarded and there will be a delay before the next image is shown). This is turned
off by default - use the Choices window to change the setting.
F and keypad Enter exit Full Screen mode; now in the Desktop, if the Display window has focus, they enter Full Screen
mode too (because of the Wimp's key numbers, Return and Enter both go into FS mode, but only Enter exits it
(intentionally - Return is commonly used as a "next image" key). ESCcape closes the display window, if it has input
focus. The Display window can be set to grab input focus on loading a picture (indeed, this is now the default); use the
Choices window to change the setting.
Up and down arrows in the Desktop or Full Screen mode, for groups of pictures, advance in steps of 10 (by default; you
can change this value in the Choices). Images not already marked bad will be included in the count even if they fail.
The space bar behaves the same way as "P" now (pausing in full screen if a timer is set, then when paused, moving to the
next image; or if no timer is set, just going to the next image).
Overlays are briefly shown when zooming in Full Screen mode to indicate the zoom type. Two equal sized rectangles with an
equals sign between them show 1:1; if the left or right rectangle is larger, the zoom mode is taken from the Desktop
scaling and shows a scale up (right hand rectangle is larger) or down (left hand is larger); a rectangle between two
horizontal bars depicts the picture scaled to fit within the boundaries of the screen, whilst a rectangle overlapping two
horizontal bars depicts a picture scaled to fill the screen, cropping if necessary.
Adjust-click in Choices doesn't close the window now.
New "don't zoom above 1:1" option for people who want to scale to fill the screen only for images too *big* to fit, but
don't want to zoom up and get a blocky image. When using the "Z" full-screen mode zoom key, this doesn't apply (i.e.
scaling above 1:1 will be allowed if you explicitly ask for it).
Keys 0-9 on the top row or the keypad set zoom factors in Full Screen mode. 1 to 5 set 1:1 through 5:1; 6 to 9 set 1:2
through 1:5; 0 sets 1:1 again.
Information panel in full screen view ("I") is at least 16 characters wide normally, but if a leaf name for a picture is
greater than this, it attempts to expand to accommodate at least the leafname. The width may be truncated below this,
though, if the pixel width of the screen mode used requires it. The panel now shows the current image number and the
total number of images, though if SwiftJPEG later reads thus far unread images and discovers they cannot be shown, the
total may decrease.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 25 of 29

Double-clicking on an image, or dragging a single image to SwiftJPEG, now doesn't add just that image to the file list.
So long as Shift isn't held down (to append the item to an existing list, or to start a new list with just that one
picture), the contents of the directory in which the image lies are added. This means you can use the next and previous
functions to step through any other images in that directory. If you have "show images in Full Screen mode on loading"
switched on, and "ignore errors in Full Screen mode" on too, then dragging a bad image, or a non-JPEG image to SwiftJPEG
will result in it looking forwards in the directory and if another viewable item is found that will get shown instead.
This is just a (sometimes useful, sometimes not) side effect of loading a directory contents rather than just a single
image. This automatic directory loading only happens when you load individual images - if you drag a group to SwiftJPEG,
then only the items in that group will be queued.
You can, in the Choices window, tell SwiftJPEG to load *directories* into Full Screen mode on loading, but not individual
images. With this set, images are shown automatically in Full Screen mode when you drag a directory to SwiftJPEG, but not
single images or image groups. The setting only affects the way in which images are shown when the directory is first
dragged to SwiftJPEG.
Holding down Ctrl when loading a single image defeats directory loading (useful in particular if it's a big directory or
a slow filesystem).
When loading directory contents for any reason, only files with the JPEG filetype already set are read.
In Full Screen mode with a slideshow timer set, using the left and right arrow keys changes the direction of slideshow
playback too. An on-screen indication of the change of direction is shown briefly on screen.
There is now a set of "ignore errors" and zoom options that apply to the Desktop, rather than only being available in
Full Screen mode. A default fixed zoom (m:d) ratio can be set, the image can be made to fit the maximum available window
visible area in the current screen mode without having to scroll to see part of the image, taking account of the "don't
cover icon bar" CMOS setting, or fill the maximum window visible area, with scrolling as necessary according to the
maximum visible area's aspect ratio versus the image's aspect ratio. The old Zoom window on the icon bar or Display
window menus still works - it will override the Choices and set whatever zoom setting you put into it. Reload the image
to reset the zoom to the Choices-specified value.

Version 1.10-B3 (27-Apr-2004) Bugs fixed
Only sets filetype of an image (1) if loading it was completely successful and (2) if it isn't already correctly set
(previously, could sometimes try to set a filetype on a non-JPEG and would always re-set existing types).
Gamma fade in/out wouldn't quite reach full or minimum intensity, particularly at fast speeds (had forgotten to put final
set-black or set-normal calls in all versions of SwiftJPEG prior to this).
When loading a directory, only queues images of filetype &C85 rather than accepting any filetype.

Version 1.10 B1 (25-Apr-2004)
Many internal changes and bug fixes, particularly for screen mode selection. Much more stable on RISC OS 3.1 if using
JPEGMsgs / JPEGRender; uses the system sprite area for file lists and application space for the JPEG, so the 4MB picture
size limit imposed by the sprite area maximum size is removed.
Rectangular pixel modes (e.g. wide pixels such as mode 2, or tall pixels such as mode 15) fully supported on all OS
versions. "Ignore errors in Full Screen mode" option. Range of Full Screen mode zooms supported - 1:1 or same as Desktop,
as before, along with "fit to screen", which scales to fit the current mode without cropping, and "fill screen" which
fills the screen, cropping if necessary. Can cycle through these modes in full screen view by pressing "Z". Can now step
forwards and backwards through picture lists with either the Main Menu options, or left/right keys in Full Screen mode or
in the Desktop (click on the Display window to give it input focus).
Choices window rearranged to a more logical layout given the new options. Version taken to 1.10 from 1.02 to reflect the
significant number of internal changes.

Version 1.02 (04-Dec-2002)
RISC OS 3.1 support (does not use dynamic areas internally). Source code indented for clarity. Minor bug fixes in mode
selection routines. Avoids setting Wimp palette to fix "pinboard re-caches the backdrop sprite once for every viewed
image" problem in Full Screen mode. Does not do strict "is this a JPEG we can handle?" check for RISC OS 4 upwards. On-
screen displays in Full Screen mode work for 4 OS unit per pixel modes now (e.g. mode 13). Better behaviour in 16 colours
or less. Supports JPEG Render or Sprite Extend modules for JPEG rendering. On-the-fly conversion of EXIF and unidentified
images to JFIFs - digital camera output now viewable directly. Help file reformatted to fit in 78 characters wide -
seemed like a good idea at the time...

Version 1.01 (24-Oct-2002)
Bug fix - SWI JPEG_Info was being called with R0:0 clear, which according to the PRMs means it should not return size
information. In RISC OS versions prior to 4.32 it does, but in 4.32 or later it does not, resulting in a failure to
display JPEGs properly. This was reported in newsgroup comp.sys.acorn.apps with André Timmermans finding the bug
(thanks).

SwiftJPEG 1.10 User Guide, 24-Feb-2005 26 of 29

Changed date format within this !Help file to DD-MMM-YYYY.

Version 1.00 (25-Apr-1996)
As version 1.00ß (below), with additions of the new Dynamic Area for filenames of groups. This allows a 'Next image' menu
item, where a group of pictures dragged on can be viewed one by one in the Desktop rather than ending up with the last
picture. You can drop in and out of Full Screen views of a group or cycle round all the files repeatedly Full Screen. So
revision of Full Screen procedure, error handling and loading mechanisms, plus addition and completion of HTML
documentation and rebuilding of the text and Junior manuals was conducted.
As such this version shows some of the most radical internal changes in the version history so far. Unfortunately the
WimpSlot had to increase as a result of the added functionality (mostly the new loading procedures - gamma fades have
little memory overhead which is why they're still present). It's only gone up to 56K (from 52K), which is the size it was
at in earlier versions anyway... There's also a reasonable amount of room left in the extra 4K for small future additions
or fixes should they be required. Documentation (and perhaps sources) may well be released 'officially' in separate
archives with filenames making the format of their contents obvious...

Version 1.00ß (Unreleased)
Radical revision to Choices arrangements, including support for hardware fade/flash in, and checking for presence of the
Compo_ReadGamma SWI to maintain any previous Desktop gamma settings. Dithering and Full Screen options moved to menus,
the latter with a specific mode selection added. Problems with reopening Display window solved as far as possible.
A few minor bugs cured and documentation is now in HTML form.
Minor improvements to polling system and way the return to the Desktop screen mode is both handled and prompted -
PollIdle now restored (an unstable intermediate between version 0.09 and 1.00 which was not completed and given no
version number had to have PollIdle replaced by Poll - less efficient).

Version 0.09 (21-Jan-1996)
Major changes are slideshow time delay and an 'always plot at 1:1' option. A 'Reload image' menu item has been added and
there's been 'debouncing' on a few buttons. The Choices I/O mechanism had to be adapted to cope with the new stuff in the
Choices window. Memory handling changed (see below). Save/App-app load (see below).
With multiple file loads and auto Full Screen, can now click Adjust to 'pause' the image when slideshow wait isn't zero -
that is, the image will stay on screen until a key/button is pressed. A pause symbol is flashed 3 times in the bottom
left of the screen to indicate this.
App-to-SwiftJPEG transfer supported through !Scrap; JPEG can be saved out. Allows e.g. UUDecodes from !TTFN to be dropped
straight into SwiftJPEG and saved out if liked.
WimpSlot taken down from 56 to 52K, and JPEGs now placed in a Dynamic Area.
Changes to many accompanying texts/manuals, and any files where 'Hipposoft 1995' appears have been altered for
'1995,1996'...! Noticed Info window had '1993-1995' in it, this now reads '1995-1996'. Remembered to spellcheck the
manual and found quite a few errors... Now corrected.

Version 0.09i
Unreleased intermediary. A couple of additions made over version 0.08 which gave me new ideas for the 'proper' version
0.09. (The 'i' stands for 'internal').

Version 0.08 (12-Dec-1995)
Changed loader routine to be filetype-independent. JPEG (&C85) filetype now only needed for double-click loading. Also
added proper error handler; various circumstances will force a quit but most of the time, there is a choice of OK or
Cancel buttons. Or just OK, if it's only a message. These changes were suggested by Stephen Borrill.
Added 'Auto Filetype' option, to set the filetype of a non-JPEG filetype JPEG file if it was loaded. Noticed a minor bug
in the Choices save routine connected with diagnostics, which was fixed (this would never have lead to incorrect
preferences saves though).
Fixed minor bug in window centering routine (!) which manifested itself when I set CMOS RAM to allow windows off-screen
in all directions. Single pixel errors when accounting for scroll and title bars also fixed.
Updated manuals and the odd minor change to above History text.

Version 0.07
The original text History file itself was created on the same day as Version 0. 07 was first saved to disc.
On request of Stuart Halliday, the title bar of the display window now holds all or part of the pathname of the JPEG file
loaded.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 27 of 29

A 'true' ellipsis was tried instead of '...' for display of pathnames to long to fit in either the Picture window or the
title bar of the Display window. However, this doesn't look good for system font users, and only lets you see another 2
characters of the pathname. I decided to stick with three full stops.
The REMs at the start of the application's crunched !RunImage (which are inserted manually after the crunching process)
have been made a little more informative.
Fixed a rather stunningly silly bug where Adjust-clicking on the close icon would open progressive parent directories,
and Shift-Adjust-Clicking would result in a crash as soon as the JPEG tried to subsequently redraw...

Version 0.06
First 'Release' version, distributed to a few people over EMail by specific requests following a mention of the software
in an Acorn-related newsgroup.
This was the first version that conformed to the original design specification drawn up prior to starting to build the
application.

Versions 0.05 to 0.01
Development versions. A new version number was assigned after a complete, working copy of the software had been
established (v0.01 was the version name used for all initial development). None of these versions were released. Fairly
major additions were generally made between version numbers.
None of these versions fully implemented the original design specification for the software.

SwiftJPEG 1.10 User Guide, 24-Feb-2005 28 of 29

Appendix E: Disclaimer and license

Disclaimer

If you do not agree with the following text, you may not use SwiftJPEG and must delete it
immediately.

“The software” or “this software” refers to the !SwiftJPEG application and any related files distributed
with it, including this manual in all of its various formats.

This software is supplied “as is”; Hipposoft makes no claims as to its reliability or suitability for any
purpose, regardless of any comments made elsewhere. No responsibility can be taken for any failure of
the software, or any loss or damage caused directly or indirectly, or not caused, by the software.

Contents of this manual are not guaranteed to be correct, and may change without notice.

This software is Freeware, and must be distributed intact, with all the files present and in the same
form as received by the end user. If being distributed in any profit-making way, permission must be
granted by Andrew Hodgkinson (Hipposoft) first.

This revision of the Disclaimer and Credits section was made on Thursday the 24th February, 2005 and
refers to SwiftJPEG v1.10 and the manual presented herein. It does not refer to versions of SwiftJPEG
or the manual made prior to this date unless explicitly indicated.

License

This work is licensed under a Creative Commons License.
See “http://creativecommons.org/licenses/by-nc/2.0/”.

Andrew Hodgkinson 2005

SwiftJPEG 1.10 User Guide, 24-Feb-2005 29 of 29

